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Many fishes are sensitive to ultraviolet (UV)
light and display UV markings during courtship.
As UV scatters more than longer wavelengths of
light, these signals are only effective at short
distances, reducing the risk of detection by
swimming predators. Such underwater scatter-
ing will be insignificant for dip and plunge
diving birds, which prey on fishes just below the
water surface. One could therefore expect to
find adaptations in the eyes of dip and plunge
diving birds that tune colour reception to UV
signals. We used a molecular method to survey
the colour vision tuning of five families of dip or
plunge divers and compared the results with
those from sister taxa of other foraging
methods. We found evidence of exten-ded UV
vision only in gulls (Laridae). Based on available
evidence, it is more probable that this trait is
associated with their terrestrial foraging habits
rather than piscivory.
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1. INTRODUCTION
Visual sensitivity to ultraviolet (UV) light has been

demonstrated in a variety of fishes, mainly fresh-

water living such as guppy (Poecilia reticulate; Smith et
al. 2002), some cichlid fish (Metriaclima zebra and

Haplochromis burtoni; Carleton et al. 2000), rainbow

trout (Salmo gairdneri; Hawryshyn et al. 1989) and a

number of coral reef fishes (Losey et al. 2003), but it

also appears to apply to species in temperate saline

waters (S. Östlund-Nilsson, personal communi-

cation). UV has been shown to play a part in fish

communication (Carleton et al. 2000). Many of the

markings on fishes that reflect UV are situated on

parts of the body that are usually displayed in court-

ship behaviours, such as the face or the fins,

suggesting a role of the UV patterns in social

communication (Thresher 1983).

Light of different wavelengths differs in physical

properties, causing the available spectrum in water to

change with depth. UV is assumed to be available

down to 200 m in clear seawater, but to use reflected

UV light for signalling purposes, the intended receiver

should be closer than 5 m, as scattering would
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otherwise blur the signal (Losey et al. 1999). UV cues
are thus of limited use to underwater predators such

as fishes and diving birds. To avian predators foraging
close to the surface however, they could be of
substantial value; the UV scattering between fishes at
shallow depths and the surface is minor and the
scattering in air is negligible (Ödeen & Håstad 2003).

Accordingly, UV markings appear more frequently on
the lateral than the dorsal surface of fishes, where
they would be most visible to avian predators flying
directly above (c.f. Losey et al. 1999). UV signals
from fishes would also stand in stark contrast to the

most abundant upwelling light, which is rich in
wavelengths between 425 and 500 nm (Austin 1974,
cited in Hart 2001).

All species of diurnal birds studied to date have
retinal colour receptors with some sensitivity to UV

(the SWS1 single cone; Honkavaara et al. 2002). The
position of maximum absorbance (l-max) of the
SWS1 cone appears to fall into either of two classes
in birds (Cuthill et al. 2000). UV-sensitive (UVS)
birds have the SWS1 l-max shifted towards shorter

wavelengths than the violet-sensitive (VS) birds
(figure 1). VS seems to be the avian ancestral state
from which UVS has evolved independently in four
lineages (Ödeen & Håstad 2003; Shi & Yokoyama
2003), one of which is gulls (family Laridae).

UV has been shown to be ecologically important in
foraging (Viitala et al. 1995; Church et al. 1998;
Siitari et al. 1999, 2002; Probst et al. 2002), but it is
also associated with various costs (Bennett & Cuthill
1994; Losey et al. 1999). That gulls maintain the

UVS system therefore indicates an adaptive value,
such as improved foraging efficiency in dip or plunge
diving. However, gulls are unique among seabirds in
that they are also highly successful on land. Many
species are terrestrial feeders and prey on inver-

tebrates to a high degree. The adaptive value of UV
in locating invertebrates has been demonstrated in
blue tits (Parus caeruleus) searching for caterpillars
(Church et al. 1998).

Variation in visual sensitivity among dip and

plunge diving birds is commonly assumed to be
adaptive in foraging. However, studies devoted to the
relative proportions of cone types between species
have yielded inconclusive results (reviewed in Hart
2001). Therefore, we have focused on surveying the

distribution of the UVS cone type. If UVS in seabirds
is an adaptation to dip or plunge diving, then it
should be more strongly associated with foraging
method than phylogenetic relationship. We would
expect to find it in all dip and plunge divers regardless

of whether their close relatives with other feeding
modes have the ancestral VS system. Conversely, if
this trait is an adaptation to terrestrial foraging, then
we should only find it in gulls among the seabirds.

To test these expectations, we have surveyed the

vision system of five families of dip or plunge divers
(figure 2) and related taxa of varying foraging
methods. Five dip and plunge families form four
monophyletic groups, each with a sister group of
swimming piscivorous birds. The phylogenetic

relationships allow for a pairwise comparison of vision
specialization in relation to foraging method.
q 2005 The Royal Society
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Figure 1. Spectral sensitivities (calculated relative photon
catches) of cones belonging to different avian colour vision
systems: (a) VS (peafowl, Pavo cristatus; Hart 2002) and
(b) UVS (blue tit, Parus caeruleus; Hart et al. 2000). SWS1
is the first peak from the left.

Figure 2. Phylogeny of seabirds and their closest relatives
(Van Tuinen et al. 2001; Paton et al. 2003). Families of
mainly dip or plunge divers are marked in bold. Laridae,
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2. MATERIAL AND METHODS
We used a recently developed molecular method for identification
of avian colour vision systems (Ödeen & Håstad 2003). It takes
advantage of the apparent tight integration of ocular transmission
and cone sensitivities with sequence variation in the SWS1 opsin
gene. By identifying a certain amino acid substitution, S90C,
known to shift l-max of SWS1 – 35 nm (Wilkie et al. 2000), the
UVS system can be identified.

We extracted total DNA from muscle tissues or feathers and
performed a polymerase chain reaction (PCR) and sequencing
following Ödeen & Håstad (2003) with the exception that we
adjusted the annealing temperature depending on the primers used
(52G2 8C), and purified all PCR products with EXOsap-IT (USB)
or Microcon YM-50 (Millipore).
the only family predisposed for UVS colour vision, is
marked with an asterisk. Spectral tuning of SWS1 cones is
determined from DNA sequencing (table 1) or retinal
microspectrophotometry (Ödeen & Håstad 2003 and refer-
ences therein; Hart 2004).
3. RESULTS AND DISCUSSION
We amplified 54–107 bp overlapping SWS1 opsin
sequences in 13 individuals from 14 species of sea-
birds and related families (GenBank accession num-
bers AY960709–AY960721). The amino acid
sequences presented in table 1 confirm that the UVS
(S90C) mutation is restricted to the monophyletic
group of gulls, Laridae (figure 2). The gulls are also
unique among seabirds in having isoleucine (I) in the
minor tuning sites 86 and 93 (table 1). The closest
relatives of the clade including the families Laridae,
Sternidae and Alcidae are the waders (families Chara-
driidae, Haematopodidae, Recurvirostridae and
Biol. Lett. (2005)
Scolopacidae, respectively; Paton et al. 2003). Three
of the wader families were previously known to be VS
(Ödeen & Håstad 2003) and the three species of
Scolopacidae examined here confirmed that this
fourth family is VS as well.

The molecular method we have used to estimate
visual tuning is indirect but robust. All data concur
with that from retinal microspectrophotometry (see
Ödeen & Håstad 2003), and the molecular change

http://rsbl.royalsocietypublishing.org/


Table 1. SWS1 cone types in species of seabirds and close relatives.
(The key tuning sites 86, 90 and 93 (Wilkie et al. 2000) are marked with bold in the amino acid sequences.)

Family Species Common name Sequence Type

Laridae Larus hartlaubii Hartlaub’s gull F I I C V F C I S I V UVS
Laridae Larus hemprichii sooty gull F I I C V L C I S I V UVS
Laridae Larus ridibundus black-headed gull F I I C V L C I S I V UVS
Laridae Rissa tridactyla black-legged kittiwake F I I C V F C I S I V UVS
Pelecanidae Pelecanus onocrotalus great white pelican F X S C X F S V F T V VS
Phasianidae Lagopus mutus rock ptarmigan F I A C I F S V F T V VS
Procellariidae Fulmarus glacialis northern fulmar F I S C I F S V F T V VS
Scolopacidae Actitis hypoleucos common sandpiper F I A C I F S V F T V VS
Scolopacidae Gallinago gallinago common snipe F I A C I F S V F T V VS
Scolopacidae Phalaropus fulicarius red phalarope F I A C I F S V F T V VS
Sternidae Sterna paradisaea artic tern F V T X I F S I X T V VS
Sternidae Sterna sandvicensis sandwich tern F V T C I F S I F T V VS
Sulidae Morus bassanus northern gannet F I S C I F S V F T V VS
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tuning SWS1 from VS to UVS coincides with changes
in the transmittance of the ocular media (Hart et al.
2000). The effects on spectral tuning of T, C and I in
position 86 and I in 93 are unknown, but the
positions only marginally contribute to the tuning of
the SWS1 cone with their previously reported amino
acids (Wilkie et al. 2000; Yokoyama et al. 2000b), and
previously sequenced species with 86C and 93I are
not notably different in spectral tuning from species
having amino acids with known effects in these
positions (Ödeen & Håstad 2003). However, 86I or
86T (new to this study) might prove important for
spectral tuning in gulls and terns, considering that
position 86 has been shown to be a key site for tuning
in mammals (Shi & Yokoyama 2003). Gulls also
deviate from other UVS birds by having 92S instead
of 92F (cf. Wilkie et al. 1998; Das et al. 1999;
Yokoyama et al. 2000a; Ödeen & Håstad 2003)
and terns are the only VS species with 91I instead of
91V (cf. Okano et al. 1992; Kawamura et al. 1999;
Ödeen & Håstad 2003).

Dip and plunge diving birds apparently do not
depend on UVS cones to locate fishes. However,
there are other ways to change the relative spectral
sensitivity of the eyes besides shifting the sensitivity
maxima of the cones. As the sensitivity of VS birds
extends into the upper part of UV, their UV vision
can be enhanced by differentially decreasing the
absorption of short wavelengths in the ocular media
or by increasing the proportion of SWS1 cones in the
retina. Nevertheless, UV signals will not stand in
contrast to the upwelling light, which is rich in
wavelengths to which the SWS1 cone of VS birds is
also sensitive (figure 1).

For any association between the dip or plunge
diving foraging method and vision system, we would
have expected to find UVS species not only in
Laridae, but also in the other four dip or plunge
families (figure 2). Even the highly specialized pisci-
vorous terns, Sternidae, which largely share feeding
habits with gulls and are their closest relatives, turned
out to be VS. Hence, our results hence do not
support that the UVS vision found in gulls is an
adaptation to dip or plunge diving. Therefore, the
most plausible explanation for the UVS system in
Biol. Lett. (2005)
gulls is an adaptation enhancing their terrestrial,

omnivorous foraging capabilities.
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